Appendix E. Additional details of the network meta-analysis

E.1 Methods of the network meta-analysis

We first define the Bayesian network meta-analysis (NMA) statistical models used to synthesize transformed outcomes, on the log hazard scale, from each randomized controlled trial (RCT). The link functions to connect these models to the different data summaries are then presented. The same statistical models are used for crisis, hospitalization days, adverse events, and serious adverse events but the link functions vary depending on what data is reported by each RCT (see main text for outcomes analyzed). The NMA models are in line with the recommendations of the National Institute for Health and Care Excellence (NICE) Decision Support Unit (DSU) technical support documents (TSD), in particular NICE DSU TSD 2. OpenBUGS code is provided for each outcome in appendix **B.4**.

For all random parameters (i.e. $\mu_{..}$ and $d_{..}$) vague Normal(0, 0.001) priors were used.

Fixed-effects network meta-analysis model

When the available evidence consists of a network of multiple pairwise comparisons (i.e. AB-trials, AC-trials, BC-trials, etc.) the standard fixed effects model for NMA can be specified as follows:

$$\theta_{jk} = \begin{cases} \mu_{jb} & \text{if } k = b \\ \mu_{jb} + d_{bk} = \mu_{jb} + d_{Ak} - d_{Ab} & \text{if } k > b \end{cases}$$
(3)
$$d_{AA} = 0$$

There are *k* treatments labelled as A, B, C, etc., and treatment A is taken to be the reference treatment for the analysis. μ_{jb} is the (transformed) outcome in study *j* on 'baseline' treatment *b* which will vary across studies. d_{bk} is the fixed effect of treatment *k* relative to 'baseline treatment' *b*. d_{bk} are identified by expressing 0them in terms of the reference treatment A: $d_{bk} = d_{Ak} - d_{Ab}$ with $d_{AA} = 0$.

Random-effects network meta-analysis model

 δ_{jbk}

$$\theta_{jk} = \begin{cases} \mu_{jb} & \text{if } k = b \\ \mu_{jb} + \delta_{jbk} & \text{if } k > b \end{cases}$$

$$\sim Normal(d_{bk}, \sigma^2) = Normal(d_{Ak} - d_{Ab}, \sigma^2)$$

$$d_{AA} = 0$$
(4)

 δ_{jbk} is the trial-specific treatment effect of *k* relative to treatment *b*. These trial-specific effects are drawn from a random-effects distribution: $\delta_{jbk} \sim N(d_{bk}, \sigma^2)$. Again, the pooled effects, d_{bk} , are identified by expressing them in terms of the reference treatment A. The heterogeneity σ^2 is assumed constant for all treatment comparisons. (A fixed effect model is obtained if σ^2 equals zero.)

This random-effects model treats multiple-arm trials (>2 treatments) without taking account of the correlations between the trial-specific δ s that they estimate. Bayesian random-effects models with a heterogeneity parameter for d_{Ak} can be easily extended to fit trials with 3 or more treatment arms by decomposing a multivariate normal distribution as a series of conditional univariate distributions.¹

$$\begin{pmatrix} \delta_{jbk_1} \\ \vdots \\ \delta_{jbk_p} \end{pmatrix} \sim Normal \begin{pmatrix} d_{bk_1} \\ \vdots \\ d_{bk_p} \end{pmatrix}, \begin{pmatrix} \sigma^2 & \cdots & \frac{\sigma^2}{2} \\ \vdots & \ddots & \vdots \\ \frac{\sigma^2}{2} & \cdots & \sigma^2 \end{pmatrix}$$
 (5)

Then the conditional univariate distributions for arm *i* given the previous 1,(*i*-1) arms are:

$$\delta_{jbk_{i}} \left| \begin{pmatrix} \delta_{jbk_{1}} \\ \vdots \\ \delta_{jbk_{i-1}} \end{pmatrix} \sim Normal \left(d_{bk_{i}} + \frac{1}{i} \sum_{j=1}^{i-1} \left(\delta_{jbk_{j}} - d_{bk_{j}} \right), \frac{(i-1)}{2i} \sigma^{2} \right)$$
(6)

Random-effects network meta-analysis model with constant covariate interaction term

$$\theta_{jk} = \begin{cases} \mu_{jb} & \text{if } k = b \\ \mu_{jb} + \delta_{jbk} & \text{if } k > b \end{cases}$$
$$\delta_{jbk} = \begin{cases} Normal(d_{Ak} - d_{Ab} + \beta X_j, \sigma^2) & \text{if } b = A \\ Normal(d_{Ak} - d_{Ab}, \sigma^2) & \text{if } b \neq A \end{cases}$$
$$d_{AA} = 0$$

 X_j is the trial-specific covariate value. β is the corresponding treatment-by-covariate interaction term, which is the same for all interventions.

Link functions for shared parameter models

As described above, the available data is connected to the model via the likelihood and the link function $\theta_{jk} = g(\gamma_{jk})$. If different data summaries are used by different studies, it is necessary to use a shared parameter model, where different link functions and likelihoods are used for each study². Our underlying model will be on the log hazard ratios *d*..., which can be fixed or random and include meta-regression effects as discussed. In SCD it will be necessary to connect the following data summaries.

1) Estimated annualized event log rate $log(\lambda_{jk})$ (mean or median) with standard error se_{jk} are modelled with identity link and Normal likelihood

$$\log(\lambda_{ik}) \sim Normal(\theta_{ik}, se_{ik}^2)$$

2) Total number of events r_{jk} over exposure E_{jk} are modelled with log link and Poisson likelihood

$$r_{jk} \sim Pois(\lambda_{jk}E_{jk})$$

 $\theta_{jk} = \log(\lambda_{jk})$

- 3) Mean number of events per patient \bar{r}_{jk} over n_{jk} patients is transformed to total number of events r_{jk} and modelled as type 2 data.
- 4) Number of patients w_{ij} with ≥ 1 event over mean follow-up time t_{ij} are modelled with a binomial likelihood and complementary log log (cloglog) link with log time as offset

$$r_{jk} \sim Binomial(P_{jk}, n_{jk})$$
$$cloglog(P_{jk}) = \log(-\log(P_{jk})) = \log(t_{jk}) + \theta_{jk}$$

5) Log hazard ratio or log rate ratio $log(hr_{jk})$ with standard error se_{jk} between active arm k and control arm b. This is slightly different as we no longer have data on both arms, only on the contrasts.

$$log(hr_{jk}) \sim Normal(\theta_{jk}, se_{jk}^2), \text{ for } k > b$$

and

$$\theta_{jk}=d_{bk} \text{ if fixed effects}$$

$$\theta_{jk}=\delta_{jbk}, \text{ if random effects or meta-regressions}$$

An adjusted standard error is needed for log hazard ratios if trials have more than 2 arms, as there is induced correlation between arms due to the common control.

Table 1 Summary of analyses	planned for	different	outcome	measures	on	each	of	the
outcomes								

Outcome	Outcome		Analysis	Why this analysis
	measure		planned	
Crisis	Total	nain	Poisson	Multiple events per patient so modelling
011010	rotar	puili	1 0100011	
	crises		likelihood, log	underlying log hazard with a Poison
			link (Type 2	likelihood.
			data)	

	Mean or rate	Scale to total	Mean per patient gives total when scaled
	pain crises	pain crises	by patient number.
	Patients with ≥1	Binomial	At most one such 'event' per patient,
	pain crisis	likelihood	giving a binomial. Convert to log hazard
		with cloglog	scale modelled via Poisson using a
		link (type 4	cloglog function and a log follow-up time
		data)	offset.
	Risk	Normal	Direct observation of difference in log
	ratio/hazard	likelihood	rates/hazards.
	ratio of crisis	with identity	
		link (type 5	
		data)	
Hospitalization	Total	Poisson	Multiple events per patient so modelling
	hospitalization	likelihood, log	underlying log hazard with a Poison
	days	link (Type 2)	likelihood.
	Mean, median,	Scale to total	Mean per patient gives total when scaled
	or rate	hospitalizatio	by patient number.
	hospitalization	n days	
	days		
Advaraa	Total overta	Poisson	Multiple events per patient as modelling
Auverse	Total events		waterlying log beread with a Deiser
events or		likelinooa, log	underlying log nazard with a Polson
serious		link (Type 2)	likelihood.
adverse	No. of patients	Binomial	At most one such 'event' per patient.
events	with > 1 event	likelihood	giving a binomial. Convert to log bazard
		with cloalog	scale modelled via Poisson using a
		link (tupo 4	elegies function and a los follow up time
		illik (type 4	
		data)	onset.
	% patients with	Scale to	Percentage gives total when multiplied by
	≥ 1 event	number of	patient numbers
		natients with	
		> 1 event	

E.2 Outcome definitions used in the analyzed trials

Study	Treatments	Crisis
Ataga 2017	Placebo, High-dose	Sickle cell-related pain crises were defined as acute episodes of pain, with
	Low-dose	resulted in a medical facility visit and treatment with oral or parenteral
	Crizanlizumab	narcotic agents or with a parenteral nonsteroidal anti-inflammatory drug.
		The acute chest syndrome, hepatic sequestration, splenic sequestration,
		and priapism were also considered to be crisis events.
Ataga 2011	Placebo, senicapoc	A painful crisis was defined as an episode of acute pain with no cause other than a vaso-occlusive event that required a medical facility visit and treatment with oral or parenteral narcotics, or parenteral non-steroidal anti-inflammatory drugs, included in the definition of painful crisis were
		acute chest syndrome, hepatic sequestration, splenic sequestration, priapism, stroke and death (with the exception of homicide, suicide, or
		accidental death). To ensure consistency across sites, all protocol-defined sickle-related painful crises identified by the Investigators that resulted in
		a visit to a medical facility were adjudicated by an independent, blinded,
		Crisis Review Committee (CRC).
Ataga 2008	Placebo, senicapoc	An independent, blinded crisis review committee adjudicated all sickle cell
	(low-dose),	painful crises and related adverse event data (Document S1). A painful
	senicapoc (high-	crisis was defined as a period of severe pain (with no explanation other
	dose)	than SCD) lasting 4 or more hours in duration, requiring a visit to a health
		care facility, and requiring parenteral opiate or other narcotic for relief
Pace 2003	Placebo, NAC (low-	Defined as a visit to a medical facility that lasted more than 4 hr for acute
	dose) 600 mg/day,	pain related to vaso-occlusion requiring parenteral narcotics. The
	NAC (mid-dose)	occurrence of acute chest syndrome, priapism, splenic, or hepatic
	1200mg/day, NAC	sequestration was also counted as a VOC episode. Acute chest syndrome
	(high-dose)	included those subjects with chest wall pain and a new infiltrate on chest
	2400mg/day	X ray.
Niihara 2018	Placebo, L-	A pain crisis was defined as pain leading to treatment with a parenterally
	glutamine	administered narcotic or ketorolac in an emergency department (ED) (or
		outpatient treatment center) or during hospitalization.

Table 3: Adverse events	reported in the 8 R	CTs in the base case	e adverse events network
	reported in the ori		

Study	Treatments	Outcome name	Adverse events included
Ataga 2017	Placebo, High-dose Crizanlizumab,	Adverse events	"Headache, Back pain, Nausea, Arthralgia, Pain in extremity, Urinary tract infection, Upper respiratory tract infection, Pyrexia, Diarrhea,

	Low-dose		Musculoskeletal pain, Pruritus, Vomiting, Chest
	Crizanlizumab		pain
		Cariaua	Duravia Influenza Dravumania
		Serious	Pyrexia, iniluenza, Pheumonia
		adverse	
		events	
Ataga 2011	Placebo, senicapoc	Adverse	Nausea, Urinary tract Infection, Headache,
		events	Arthralgia, Upper respiratory tract Infection,
			Vomiting, Pyrexia, Pneumonia, Back pain, Pain
			in extremity, Nasopharyngitis, Cough,
			Constipation, Fatigue, Hypokalaaemia,
			Haematuria, Diarrhoea, Abdominal pain,
			Pharyngolaryngeal pain, Pruritus, Drug
			hypersensitivity
Ato ao 0000	Diagona apricana	Advaraz	Diarrhoa Noussa Constituction
Ataga 2008	Placebo, senicapoc	Adverse	Diarrnea, Nausea, Constipation,
	(IOW-DOSE),	events	Gastroenteritis, Upper respiratory tract
	senicapoc (nign-		Authorateia Dealenair
	dose)		Arthraigia, Back pain
Niihara 2018	Placebo, L-	Adverse	Tachycardia, Constipation, Nausea, Vomiting,
	glutamine	events	Abdominal pain upper, Diarrhea, Chest pain
			(noncardiac), Fatigue, Urinary tract infection,
			Pain in extremity, Back pain, Headache,
			Dizziness, Nasal congestion
		Serious	A serious adverse event was defined as any adverse event, occurring while the patient was
		adverse	receiving the trial medication or placebo at any
		events	event, inpatient hospitalization or prolongation
			of existing hospitalization, a persistent or
			congenital
			anomaly or birth defect. Notable medical events
			that might not have resulted in death, been life-
			threatening, or required hospitalization could be
			considered serious adverse events if it was
			determined, on the basis of appropriate medical
			judgment, that they could place the patient's
			health in jeopardy and might require medical or
			surgical intervention to prevent one of the
			outcomes listed in the definition of serious
			adverse events.

Glassberg 2017	mometasome placebo		Hoarseness of voice, thrush, sore throat
Sins 2017	NAC placebo	Adverse events	Gastro-intestinal complaints, Pruritus / Rash, plus Discontinuation of study drug or placebo because of adverse event and serious adverse events
		Serious adverse events	Acute Chest Syndrome, Liver/spleen sequestration, Pyelonefritis with admission, Cholelithiasis with admission, Gastrointestinal perforation, Pulmonary embolism, Pneumonia with admission
Wun 2013	Prasugrel, placebo	Any serious adverse event	No detail given but they were non-hemorrhagic events
NCT0248229 8	Placebo TICAGRELOR 10MG, TICAGRELOR 45MG	Adverse events Serious adverse events	Sickle cell anaemia with crisis, Abdominal pain, nausea, toothache, vomiting, fatigue, non- cardiac chest pain, pain, pneumonia, Upper respiratory tract infection, Urinary tract infection, Arthralgia, Back pain, Musculoskeletal chest pain, Musculoskeletal pain, pain in extremity, Headache, Dysmenorrhoea, Cough, Epistaxis, Oropharyngeal pain Reticulocytopenia, Sickle cell anemia with crisis, Local swelling, Hepatic ischemia, Cellulitis, Gastroenteritis, Lower respiratory tract infection, Face injury, Arthralgia, Back pain, Musculoskeletal chest pain, headache,
Glassberg 2017	mometasome placebo		Hoarseness of voice, thrush, sore thr`oat

E.3 Additional results of the network meta-analysis

Extended network for potential indirect evidence

We wished to assess whether additional direct or indirect evidence would be provided on comparators studied in the 9 RCTs of the adult only NMA by including the 25 excluded non-adult RCTs as well as Vichinsky 2010 on transfusions under the assumption that their standard of care was a placebo. To do this we plotted the evidence networks including non-adult RCTs reporting on crisis, hospitalization days, adverse events, and serious adverse events and connected to high-dose crizanlizumab. However, there were only additional RCTs connected to high-dose crizanlizumab reporting on the crisis outcome. No additional RCTs connected to high-dose crizanlizumab reported on hospitalization days, adverse events, and serious adverse events.

The extended evidence network for crisis is presented in Figure 1. This network consists of 9 RCTs, including 4 RCTs not in the adult only network: Daak 2018 (AltemiaTM vs placebo)³, Heeney 2016 (prasugrel vs placebo)⁴, Reid 2014 (HQK-1001 vs placebo)⁵, Vichinsky 2010 (transfusions vs standard of care)⁶. The extended network included 3 treatments not in the base case (AltemiaTM, HQK-1001, and Prasugrel). However, these additional RCTs did not provide direct or indirect evidence on any comparisons in the base case network.

Figure 1. Network of evidence for crisis in the extended population. Consists of 9 RCTs and 14 treatments.*

* Network included adult (base case) and non-adult studies. Adult studies: Ataga 2017 (crizanlizumab vs placebo), Ataga 2011 (senicapoc vs placebo), Ataga 2008 (senicapoc low-dose, senicapoc high-dose vs placebo), Pace 2003 (NAC vs placebo), Niihara 2017 (L-glutamine vs placebo), Vichinsky 2010 (transfusion vs placebo). Non-adult studies: Daak 2018 (AltemiaTM vs placebo), Heeney 2016 (prasugrel vs placebo), Reid 2014 (HQK-1001 vs placebo)

Sensitivity analysis using >18 years old subgroup results from Niihara 2018 on L-glutamine

As our target population was patients \geq 16 years old the Niihara 2018 study with 51 patients aged 5-12, 67 aged 13-18, and 112 aged >18 potentially differed in important effect modifiers. We used the reported rate ratio of 0.64 with 95% confidence interval (0.45, 0.89) in a subgroup of patients aged >18 years old to repeat our NMA. The results are presented as forest plots in Figure 2 with p-value table in Table 4 and pairwise results in Table 13. Notably, the hazard ratio for crises on crizanlizumab vs L-glutamine is 0.86 (0.57, 1.29) with p-value 0.77; this is higher and more uncertain that the hazard ratio of 0.67 (0.51, 0.88) and p-value >0.99 estimated using the full results of Niihara 2018.

Sd

Table 4. Bayesian probabilities that crizanlizumab is superior or inferior on each outcome analyzed using >18 year old subgroup results from Niihara 2018.

Treatment	Probability superior
Placebo	>0.9999
NAC (high-dose 2400mg)	0.1495
L-glutamine	0.7707
Low-Dose Crizanlizumab	0.9454
Senicapoc	>0.9999
High-Dose Senicapoc	0.8066
Low-Dose NAC	0.9429
Low-Dose Senicapoc	0.8354
Mid-Dose NAC	0.6649

Model assessment of the crisis network meta-analysis

Model fit and meta-regressions were explored. The base case fixed effects model fit well (total residual deviance close to number of data points⁷) but the meta-regressions did not converge (Gelman-Rubin Rhat statistic far from 1.000, very wide credible intervals for the regression coefficient). This was because there was only one RCT on each treatment contrast. Deviance and DIC do not in any case suggest evidence of effect modification as they are similar to the fixed effects analysis.

Model	Number data points	Total residual deviance	DIC	Regression coefficient	Gelman- Rubin Rhat for regression
Base FE	14	15.44 (6.11, 25.85)	102.8	NA	NA
Proportion female FE	14	15.59 (6.14, 26.23)	102.9	45.66 (-83.88, 188.64)	1.681

Table 5. Crisis among the adult population: Model comparison

Mean age FE	14	16.07 (6.23, 27.08)	103.8	-3.89 (-4.95, - 2.85)	9.652
Proportion HbSS FE	14	15.4 (6.15 <i>,</i> 25.73)	102.7	44.14 (8.16, 72.78)	2.018
	1/	15.29 (6.18,	102.5	76.07 (47.4,	7 202
Proportion HU use FE	14	25.44)	102.5	106.76)	7.392
		15.18 (6,		-7.35 (-50.24,	
Trial duration FE	14	25.34)	102.5	37.51)	7.528
Proportion black FE	14	15.77 (6.37, 26.29)	103.3	-2.93 (-78.26, 72.71)	21.211

Model assessment of the hospitalization days network meta-analysis

Model assessment and exploration of meta-regressions are presented in Table 6. The base case fixed effects model fits well (total residual deviance close to number of data points). Meta-regressions did not converge (Rhat statistic far from 1.000 and very wide credible intervals on the regression coefficient) as there was only one study on each treatment contrast. The deviance and DIC do not in any case suggest evidence of effect modification.

Model	Number data points	Total residual deviance	DIC	Regression coefficient	Gelman-Rubin Rhat for regression
Base FE	9	10.32 (3.02, 18.67)	72.69	NA	NA
Proportion female FE	9	10.46 (2.93, 19.2)	72.6	37.75 (-98.37, 172.76)	24.655
Mean age FE	9	10.52 (3.09, 19.2)	72.57	-5.85 (-7.09 <i>,</i> - 4.67)	6.029
Proportion HbSS FE	9	10.28 (2.91, 18.68)	72.71	39.4 (-33.02, 108.38)	21.868

 Table 6. Hospitalization days among the adult population: Model comparison

Proprotion HU use FE	9	10.22 (2.99 <i>,</i> 18.53)	72.44	78.51 (15.98, 139.67)	7.582
Trial duration FE	9	10.03 (2.9, 18.16)	72.33	16.54 (-3.57, 36.27)	34.345
Proportion black FE	9	9.99 (3.05, 17.91)	72.25	29.18 (-26.53, 86)	27.376

Model assessment for the adverse events network meta-anlaysis

Model assessment and exploration of meta-regressions are presented in Table 7. The base case fixed effects model fits well (total residual deviance close to number of data points). Meta-regressions did not converge (Rhat statistic far from 1.000 and very wide credible intervals on the regression coefficient) as there was only one study on each treatment contrast. The deviance and DIC do not in any case suggest evidence of effect modification.

Model	Number data points	Total residual deviance	DIC	Regression coefficient	Gelman-Rubin Rhat for regression
Base FE	11	12.38 (4.25, 21.55)	71.72	NA	NA
Proportion female FE	11	12.51 (4.27, 21.81)	71.96	57.94 (2, 114.04)	1.838
Mean age FE	11	12.35 (4.11, 21.73)	71.46	0.27 (-4.32, 4.95)	38.731
Proportion HbSS FE	11	12.65 (4.22, 22.29)	71.84	-45.33 (- 137.28, 42.08)	10.813
Proprotion HU use FE	11	12.15 (4.25, 21.02)	71.4	-25.25 (-81.24, 28)	5.985

Table 7. Adverse events among the adult population: Model comparison

Trial duration FE	11	12.02 (4.18, 20.87)	71.11	21.33 (-1.45, 43.98)	20.575
Proportion black FE	11	12.31 (4.33, 21.3)	71.61	-20.3 (-48.26, 3.68)	4.349

Model assessment for the serious adverse events network meta-anlaysis

Model assessment and exploration of meta-regressions are presented in Table 8. The base case fixed effects model fits well (total residual deviance close to number of data points). Meta-regressions did not converge (Rhat statistic far from 1.000 and very wide credible intervals on the regression coefficient) as there was only one study on each treatment contrast. The deviance and DIC do not in any case suggest evidence of effect modification.

Model	Number data points	Total residual deviance	DIC	Regression coefficient	Gelman- Rubin Rhat for regression
Base FE	12	13.49 (4.86, 23.2)	70.89	NA	NA
Proportion female FE	12	13.87 (4.96, 23.98)	71.27	-57.35 (-183.99, 65.33)	1.204
Mean age FE	12	13.98 (5.08, 24.06)	71.49	-2.06 (-4.45, 0.36)	40.773
Proportion HbSS FE	12	14.08 (5.04, 24.24)	71.96	51.6 (35.74, 65.75)	1.652
Proportion HU use FE	HU 12 13.49 (4.9 23.1)		70.99	-140.71 (-210.66, - 68.54)	13.326
Trial duration FE	12	13.62 (4.92, 23.54)	70.87	-19.04 (-34.58, -3.28)	15.267

 Table 8. Serious adverse events among the adult population: model comparison

Proportion black FE	12	13.37 (4.75, 23.13)	70.66	-5.77 (-118.35, 104.8)	36.318
------------------------	----	------------------------	-------	------------------------	--------

B.3 OpenBUGS code for the network meta-analysis

The code for the four shared parameter models used to analyze crisis, hospitalization days, adverse events, and serious adverse events are presented below. This code was run in OpenBUGS version 3.2.3 ⁸ with two MCMC chains of 400,000 iterations for burn-in and 30,000 iterations for posterior sampling.

Fixed effects model used for analyzing crisis.

structure(.Data= c(1.93700E+02, 1.09210E+02, 1.32660E+02,

```
model{
        # Data type 2; r2 events in exposure E2
        # Poisson likelihood, log link
        # Fixed effects model for multi-arm trials
       for(i in 1:ns2){
                                   # LOOP THROUGH STUDIES
                mu2[i] ~ dnorm(0,.0001)
                                              # vague priors for all trial baselines
                for (k in 1:na2[i]) {
                                         # LOOP THROUGH ARMS
                        r2[i,k] ~ dpois(theta2[i,k]) # Poisson likelihood
                        theta2[i,k] <- lambda[i,k]*E2[i,k] # failure rate * exposure
                        # model for linear predictor
                        log(lambda[i,k]) <- mu2[i] + d[t2[i,k]] - d[t2[i,1]]
                        #Deviance contribution
                        dev2[i,k] <- 2*((theta2[i,k]-r2[i,k]) + r2[i,k]*log(r2[i,k]/theta2[i,k]))
                        # summed residual deviance contribution for this trial
                        resdev2[i] <- sum(dev2[i,1:na2[i]])
        totresdev2 <- sum(resdev2[])
                                            #Total Residual Deviance
totresdev<-totresdev2+0
        # Treatment effect model is shared between the three likelihoods
                   # treatment effect is zero for control arm
       d[1]<-0
        # vague priors for treatment effects
        for (k in 2:nt){ d[k] ~ dnorm(0,.0001) }
        for(k in 1:nt)
       {
                # Bayesian one-sided p-values
                # Probability that treatment j has higher hazard than treatment k
                # step(x) is 1 if x \ge 0
                for (j in 1:nt){ pval[j,k] <- step(d[j]-d[k]) }
       }
}
# Data in BUGS format (some data is redundant)
list(E2= structure(.Data= c(6.50000E+01, 6.70000E+01, 6.60000E+01,
                                                                                 NA, 1.44000E+02,
1.45000E+02,
                            NA, 6.92308E+00, 7.15385E+00, 6.69231E+00,
                                                                                 NA, 1.75000E+00,
                   NA.
2.91667E+00, 2.333333E+00, 2.91667E+00, 7.20000E+01, 1.40308E+02, NA,
                                                                                 NA), .Dim=c(5, 4)),
t2= structure(.Data= c(1.00000E+00, 2.00000E+00, 5.00000E+00, NA, 1.00000E+00, 6.00000E+00,
          NA, 1.00000E+00, 7.00000E+00, 9.00000E+00,
                                                                  NA, 1.00000E+00, 3.00000E+00,
NA.
8.00000E+00, 1.00000E+01, 1.00000E+00, 4.00000E+00,
                                                                            NA), .Dim=c(5, 4)), r2=
                                                                 NA,
```

NA, 8.90000E+01, 1.06000E+02,

NA, NA, 5.00000E+00, 5.00000E+00, 5.00000E+00, NA, 8.00000E+00, 4.00000E+00, 1.20000E+01, 9.00000E+00, 3.04200E+02, 4.86400E+02, NA), .Dim=c(5, 4)), n4= NA. structure(.Data= c(3.80000E+01, 3.80000E+01), .Dim=c(1, 2)), ns1=0.00000E+00, ns2=5.00000E+00, ns4=0.00000E+00, ns5=0.00000E+00, na1=0.00000E+00, na2=c(3.00000E+00, 2.00000E+00, 4.00000E+00, 2.00000E+00), na4=c(0.00000E+00, 3.00000E+00. 0.00000E+00), na5=c(0.00000E+00, 0.00000E+00), nt=1.00000E+01, x= structure(.Data= c(NA, NA, NA, NA. NA, NA, 5.50505E-01, 2.80152E+01, 7.12121E-01, 6.21212E-01, 1.00000E+00, 9.19192E-01, NA, NA, NA. NA. NA, NA, NA, NA, NA, NA, NA, NA. NA, NA. NA. NA. NA, 5.53633E-01, 2.89983E+01, 8.47751E-01, 5.64014E-01, 1.00000E+00, 9.51557E-01, NA, NA. NA, 5.00000E-01, 3.54833E+01, 1.00000E+00, 5.37603E-01, 2.30769E-01, 8.14103E-01, NA. NA, NA, NA, NA, NA, NA, NA, NA, NA. NA, NA, NA, NA. NA. NA. NA, 4.76190E-01, 2.05286E+01, 8.49869E-01, 5.37603E-01, 5.83333E-01, 8.14103E-01, NA, NA, NA, NA, NA, NA, NA, NA, NA. NA. NA, NA. NA. NA. NA. NA. NA. NA, 5.39130E-01, 2.20609E+01, 9.00000E-01, 6.65217E-01, 9.23077E-01, 9.43478E-01, NA, NA, NA, 01, 2.52754E+01, 8.49869E-01, 5.37603E-01, 9.51465E-01, 8.14103E-01), r2.base=c(1.93700E+02, 1.22000E+02, 8.90000E+01, 5.00000E+00, 8.00000E+00, 3.04200E+02), E2.base=c(6.50000E+01, 1.27500E+02, 1.44000E+02, 6.92308E+00, 1.75000E+00, 7.20000E+01), r4.base=1.90000E+01, time4.base=4.61538E-01, n4.base=3.80000E+01, ns2.base=6.00000E+00, ns4.base=1.00000E+00)

Initial values (includes initial values for meta-regressions, which are redundant) # Inits 1

list(*B*=5.00000*E*-01, *d*=*c*(*NA*, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, *sd*=1.00000*E*+00, *mu.base*=1.00000*E*+00, *mu2*=*c*(1.40000*E*+00, 1.40000*E*+00, 1

Inits 2

list(*B*=1.00000*E*-01, *d*=*c*(NA, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, s*d*=5.00000*E*-01, mu.base=5.00000*E*-01, mu2=*c*(7.00000*E*-01, 7.00000*E*-01, 7.00000*E*-01, 7.00000*E*-01))

Fixed effects model used for analyzing hospitalization days.

model{	
•	# Data type 2; r2 events in exposure E2
	# Poisson likelihood, log link
	# Fixed effects model for multi-arm trials
	for(i in 1:ns2){ # LOOP THROUGH STUDIES
	mu2[i] ~ dnorm(0,.0001) # vague priors for all trial baselines
	for (k in 1:na2[i]) {
	r2[i,k] ~ dpois(theta2[i,k]) # Poisson likelihood
	theta2[i,k] <- lambda[i,k]*E2[i,k] # failure rate * exposure
	# model for linear predictor
	log(lambda[i,k]) <- mu2[i] + d[t2[i,k]] - d[t2[i,1]]
	#Deviance contribution
	dev2[i,k] <- 2*((theta2[i,k]-r2[i,k]) + r2[i,k]*log(r2[i,k]/theta2[i,k]))
	}
	# summed residual deviance contribution for this trial
	resdev2[i] <- sum(dev2[i,1:na2[i]])
	}
	totresdev2 <- sum(resdev2[]) #Total Residual Deviance
totresde	ev<-totresdev2+0
	# Treatment effect model is shared between the three likelihoods
	d[1]<-0 # treatment effect is zero for control arm
	# vague priors for treatment effects
	for $(k \text{ in } 2:nt) \{ d[k] \sim dnorm(0,.0001) \}$
	for(k in 1:nt)
	{

Bayesian one-sided p-values
Probability that treatment j has higher hazard than treatment k
step(x) is 1 if x>=0
for (j in 1:nt){ pval[j,k] <- step(d[j]-d[k]) }</pre>

}

}

```
# Data in BUGS format (some data is redundant)
```

list(ns5=0.00000E+00, ns4=0.00000E+00, E2= structure(.Data= c(6.53846E+00, 1.34615E+01, NA. 6.50000E+01, 6.70000E+01, 6.60000E+01, 8.50000E+00, 5.00000E+00, NA, 7.20000E+01, 1.40308E+02. NA), .Dim=c(4, 3)), t2= structure(.Data= c(1.00000E+00, 5.00000E+00, NA. 1.00000E+00, 2.00000E+00, 6.00000E+00, 1.00000E+00, 3.00000E+00, NA, 1.00000E+00, 4.00000E+00, NA), .Dim=c(4, 3)), r2= structure(.Data= c(6.95300E+01, 9.34500E+01, NA 4.46550E+02, 2.68000E+02, 4.53420E+02, 5.30000E+01, 9.00000E+00, NA. 1.81000E+01. 1.21000E+01. NA), .Dim=c(4, 3)), ns1=0.00000E+00, ns2=4.00000E+00, na1=0.00000E+00, na2=c(2.00000E+00, 3.00000E+00, 2.00000E+00, 2.00000E+00), nt=6.00000E+00. X =structure(.Data= c(NA, NA, NA, 4.42308E-01, 3.19615E+01, 9.61538E-01, NA, NA, NA, 5.23307E-01, 3.07692E-01, 8.09945E-01, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA. NA. NA. NA, NA, NA, NA, NA, NA, NA, 5.50505E-01, 2.80152E+01, 7.12121E-01, 6.21212E-01, 1.00000E+00, 9.19192E-01, NA, 5.97015E-01, 2.88836E+01, NA. NA. NA. NA. NA. NA, NA, 6.86567E-01, 4.17910E-01, 5.00000E-01, 5.67164E-01, NA, NA, NA, NA, NA, NA. NA. NA. NA, 5.39130E-01, 2.20609E+01, 9.00000E-01, 6.65217E-01, 9.23077E-01, 9.43478E-01, NA, NA, NA, NA, NA, NA, NA, NA. NA, NA), .Dim=c(4, 4, 6)), mx=c(5.32240E-01, 2.81176E+01, 8.15057E-01, NA. NA. NA. 5.23307E-01, 6.82692E-01, 8.09945E-01))

Initial values (includes initial values for meta-regressions, which are redundant)
Inits 1
list(B=5.00000E-01, d=c(NA, 1.00000E+00, 1.00000E+00, 1.00000E+00,
1.00000E+00), sd=1.00000E+00, mu.base=1.00000E+00, mu2=c(1.40000E+00, 1.40000E+00,
1.40000E+00, 1.40000E+00))

Inits 2

list(*B*=1.00000E-01, d=c(NA, 5.00000E-01, 5.00000E-01, 5.00000E-01, 5.00000E-01, 5.00000E-01), sd=5.00000E-01, mu.base=5.00000E-01, mu2=c(7.00000E-01, 7.00000E-01, 7.00000E-01, 7.00000E-01))

Fixed effects model used for analyzing adverse events.

model{

Data type 2; r2 events in exposure E2 # Poisson likelihood, log link # Fixed effects model for multi-arm trials for(i in 1:ns2){ **# LOOP THROUGH STUDIES** mu2[i] ~ dnorm(0,.0001) # vague priors for all trial baselines # LOOP THROUGH ARMS for (k in 1:na2[i]) { r2[i,k] ~ dpois(theta2[i,k]) # Poisson likelihood theta2[i,k] <- lambda[i,k]*E2[i,k] # failure rate * exposure *# model for linear predictor* log(lambda[i,k]) <- mu2[i] + d[t2[i,k]] - d[t2[i,1]] #Deviance contribution dev2[i,k] <- 2*((theta2[i,k]-r2[i,k]) + r2[i,k]*log(r2[i,k]/theta2[i,k])) # summed residual deviance contribution for this trial resdev2[i] <- sum(dev2[i,1:na2[i]]) totresdev2 <- sum(resdev2[]) #Total Residual Deviance

Data type 4; number of patients r4 out of n4 with >=1 event in time4 # Binomial likelihood, cloglog link # Fixed effects model for multi-arm trials for(i in 1:ns4){ # LOOP THROUGH STUDIES mu4[i] ~ dnorm(0,.0001) # vague priors for all trial baselines for (k in 1:na4[i]) { # LOOP THROUGH ARMS r4[i,k] ~ dbin(p[i,k],n4[i,k]) # Binomial likelihood # model for linear predictor cloglog(p[i,k]) <- log(time4[i,k]) + mu4[i] + d[t4[i,k]] - d[t4[i,1]] rhat[i,k] <- p[i,k] * n4[i,k] # expected value of the numerators #Deviance contribution dev4[i,k] <- 2 * (r4[i,k] * (log(r4[i,k])-log(rhat[i,k])) + (n4[i,k]-r4[i,k]) * (log(n4[i,k]-r4[i,k]) - log(n4[i,k]-rhat[i,k]))) # summed residual deviance contribution for this trial resdev4[i] <- sum(dev4[i,1:na4[i]]) totresdev4 <- sum(resdev4[]) #Total Residual Deviance totresdev<-totresdev2+totresdev4+0 # Treatment effect model is shared between the three likelihoods # treatment effect is zero for control arm d[1]<-0 # vague priors for treatment effects for (k in 2:nt){ d[k] ~ dnorm(0,.0001) } for(k in 1:nt) ł # Bayesian one-sided p-values # Probability that treatment j has higher hazard than treatment k # step(x) is 1 if $x \ge 0$ for (j in 1:nt){ pval[j,k] <- step(d[j]-d[k]) } }

Data in BUGS format (some data is redundant)

}

list(ns5=0.00000E+00, ns1=0.00000E+00, E2= structure(.Data= c(3.92308E+00, 8.07692E+00, 2.40000E+01, 2.40000E+01, 1.44000E+02, 1.45000E+02), .Dim=c(3, 2)), t2= structure(.Data= c(1.00000E+00, 3.00000E+00, 1.00000E+00, 2.00000E+00, 1.00000E+00, 4.00000E+00), .Dim=c(3, 2)), r2= structure(.Data= c(9.00000E+00, 3.20000E+01, 3.60000E+01, 3.90000E+01, 1.19000E+02, 1.27000E+02), .Dim=c(3, 2)), time4= structure(.Data= c(1.00000E+00, 1.00000E+00, 1.00000E+00, 9.23077E-01, 9.23077E-01, NA), .Dim=c(2, 3)), n4= structure(.Data= c(6.20000E+01, 6.60000E+01, 6.40000E+01, 7.80000E+01, 1.52000E+02, NA), .Dim=c(2, 3)), t4= structure(.Data= c(1.00000E+00, 5.00000E+00, 7.00000E+00, 1.00000E+00, 6.00000E+00, NA), .Dim=c(2, 3)), r4= structure(.Data= c(5.50000E+01, 5.70000E+01, 5.60000E+01, 7.75000E+01, 1.48460E+02, NA), .Dim=c(2, 3)), ns4=2.00000E+00, na2=c(2.00000E+00, 2.00000E+00, 2.00000E+00), ns2=3.00000E+00, na4=c(3.00000E+00, 2.00000E+00), nt=7.00000E+00, x= structure(.Data= c(NA, NA, NA, NA. NA, 4.42308E-01, 3.19615E+01, 9.61538E-01, 5.31449E-01, 3.07692E-01, 8.45348E-01, NA. 5.50505E-01, 2.80152E+01, 7.12121E-01, 6.21212E-01, 1.00000E+00, 9.19192E-01, NA, NA. NA. NA. NA. NA. NA. NA. NA. NA, NA, 5.97015E-01, 2.88836E+01, NA. 6.86567E-01, 4.17910E-01, 5.00000E-01, 5.67164E-01, 5.39130E-01, 2.20609E+01, 9.00000E-01, NA, NA, 6.65217E-01, 9.23077E-01, 9.43478E-01, NA, NA, NA, NA, NA, NA, NA. NA, 5.53633E-01, 2.89983E+01, 8.47751E-01, 5.64014E-01, 1.00000E+00, 9.51557E-NA. NA. 01. NA, NA, NA. NA. NA, NA, NA, NA, NA, NA, NA. NA), .Dim=c(3, 4,6)), mx=c(5.36518E-01, 2.82643E+01, 8.21596E-01, 5.31449E-01, 7.46154E-01, 8.45348E-01), r2.base=c(9.00000E+00, 3.60000E+01, 1.19000E+02), E2.base=c(3.92308E+00, 2.40000E+01, 1.44000E+02), r4.base=c(5.50000E+01, 7.75000E+01), time4.base=c(1.00000E+00, 9.23077E-01), n4.base=c(6.20000E+01, 7.80000E+01), ns2.base=3.00000E+00, ns4.base=2.00000E+00)

Initial values (includes initial values for meta-regressions, which are redundant) # Inits 1

list(*B*=5.00000*E*-01, *d*=*c*(NA, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, *sd*=1.00000*E*+00, *mu*.*base*=1.00000*E*+00, *mu*2=*c*(1.40000*E*+00, 1.40000*E*+00, *mu*4=*c*(5.00000*E*-01, 5.00000*E*-01))

Inits 2

list(*B*=1.00000*E*-01, *d*=*c*(NA, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, 5.00000*E*-01, *mu*.*base*=5.00000*E*-01, *mu*2=*c*(7.00000*E*-01, 7.00000*E*-01, 7.0000*E*-01, 7.

Fixed effects model used for analyzing serious adverse events.

```
model{
        # Data type 2; r2 events in exposure E2
        # Poisson likelihood, log link
        # Fixed effects model for multi-arm trials
        for(i in 1:ns2){
                                     # LOOP THROUGH STUDIES
                 mu2[i] ~ dnorm(0,.0001)
                                                  # vague priors for all trial baselines
                                            # LOOP THROUGH ARMS
                 for (k in 1:na2[i]) {
                         r2[i,k] ~ dpois(theta2[i,k]) # Poisson likelihood
                         theta2[i,k] <- lambda[i,k]*E2[i,k] # failure rate * exposure
                         # model for linear predictor
                         log(lambda[i,k]) <- mu2[i] + d[t2[i,k]] - d[t2[i,1]]
                         #Deviance contribution
                         dev2[i,k] <- 2^{*}((theta2[i,k]-r2[i,k]) + r2[i,k]^{*}log(r2[i,k]/theta2[i,k]))
                         # summed residual deviance contribution for this trial
                         resdev2[i] <- sum(dev2[i,1:na2[i]])
        totresdev2 <- sum(resdev2[])
                                              #Total Residual Deviance
        # Data type 4; number of patients r4 out of n4 with >=1 event in time4
        # Binomial likelihood, cloglog link
        # Fixed effects model for multi-arm trials
        for(i in 1:ns4){
                                     # LOOP THROUGH STUDIES
                 mu4[i] ~ dnorm(0,.0001)
                                                 # vague priors for all trial baselines
                 for (k in 1:na4[i]) {
                                            # LOOP THROUGH ARMS
                         r4[i,k] ~ dbin(p[i,k],n4[i,k]) # Binomial likelihood
                         # model for linear predictor
                         cloglog(p[i,k]) <- log(time4[i,k]) + mu4[i] + d[t4[i,k]] - d[t4[i,1]]
                         rhat[i,k] <- p[i,k] * n4[i,k]
                                                        # expected value of the numerators
                         #Deviance contribution
                         dev4[i,k] <- 2 * (r4[i,k] * (log(r4[i,k])-log(rhat[i,k]))
                 + (n4[i,k]-r4[i,k]) * (log(n4[i,k]-r4[i,k]) - log(n4[i,k]-rhat[i,k])))
                                                                                    }
                         # summed residual deviance contribution for this trial
                         resdev4[i] <- sum(dev4[i,1:na4[i]])
        totresdev4 <- sum(resdev4[])
                                              #Total Residual Deviance
totresdev<-totresdev2+totresdev4+0
        # Treatment effect model is shared between the three likelihoods
        d[1]<-0
                    # treatment effect is zero for control arm
        # vague priors for treatment effects
        for (k in 2:nt){ d[k] ~ dnorm(0,.0001) }
        for(k in 1:nt)
        ł
                 # Bayesian one-sided p-values
                 # Probability that treatment j has higher hazard than treatment k
                 # step(x) is 1 if x>=0
                 for (j in 1:nt){ pval[j,k] <- step(d[j]-d[k]) }
        }
}
```

Data in BUGS format (some data is redundant)

list(ns5=0.00000E+00, ns1=0.00000E+00, E2= structure(.Data= c(2.40000E+01, 2.40000E+01, NA. 1.56164E+00, 3.36986E+00, NA, 6.92308E+00, 6.92308E+00, 6.00000E+00), .Dim=c(3, 3)), t2= structure(.Data= c(1.00000E+00, 2.00000E+00, NA, 1.00000E+00, 3.00000E+00, NA. 1.00000E+00, 4.00000E+00, 5.00000E+00), .Dim=c(3, 3)), r2= structure(.Data= c(2.00000E+00, NA, 4.00000E+00, 8.00000E+00, NA, 6.00000E+00, 5.00000E+00, 6.00000E+00), 8.00000E+00. .Dim=c(3, 3)), time4= structure(.Data= c(1.00000E+00, 1.00000E+00, 1.00000E+00, 9.23077E-01, 9.23077E-01, NA), .Dim=c(2, 3)), n4= structure(.Data= c(6.20000E+01, 6.60000E+01, 6.40000E+01, 7.80000E+01, 1.52000E+02, NA), .Dim=c(2, 3)), t4= structure(.Data= c(1.00000E+00, 6.00000E+00, 8.00000E+00, 1.00000E+00, 7.00000E+00, NA), .Dim=c(2, 3)), r4= structure(.Data= c(1.70000E+01, 1.70000E+01, 2.10000E+01, 6.79380E+01, 1.18864E+02, NA), .Dim=c(2, 3)), ns2=3.00000E+00, ns4=2.00000E+00, na2=c(2.00000E+00, 2.00000E+00, 3.00000E+00),na4=c(3.00000E+00, 2.00000E+00), nt=8.00000E+00, x= structure(.Data= c(NA, NA, NA. NA, NA. NA 5.97015E-01, 2.88836E+01, 6.86567E-01, 4.17910E-01, 5.00000E-01, 5.67164E-01, 5.50505E-01, 2.80152E+01, 7.12121E-01, 6.21212E-01, 1.00000E+00, 9.19192E-01, NA. NA. NA NA. NA. NA. NA. NA, 4.83871E-01, 3.24258E+01, 5.96774E-01, NA. NA. NA. NA. 5.23307E-01, 6.45161E-02, 7.39642E-01, 5.39130E-01, 2.20609E+01, 9.00000E-01, 6.65217E-01, NA, NA, NA, NA, NA, NA, NA, 9.23077E-01, 9.43478E-01, NA, NA, NA, NA, NA, 5.40230E-01, 2.22448E+01, 7.23866E-01, 5.23307E-01, 2.30769E-01, 5.28736E-01, NA. NA. NA, NA. NA, NA. NA, NA, NA, NA, NA, NA), .Dim=c(3, 4, 6)), mx=c(5.42150E-01, 2.72162E+01, 7.23866E-01, 5.23307E-01, 5.43672E-01, 7.39642E-01), r2.base=c(2.00000E+00, 6.00000E+00), E2.base=c(2.40000E+01, 1.56164E+00, 4.00000E+00. 6.92308E+00). r4.base=c(1.70000E+01, 6.79380E+01), time4.base=c(1.00000E+00, 9.23077E-01), n4.base=c(6.20000E+01, 7.80000E+01), ns2.base=3.00000E+00, ns4.base=2.00000E+00)

Initial values (includes initial values for meta-regressions, which are redundant) # Inits 1

list(*B*=5.00000*E*-01, *d*=*c*(*NA*, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, 1.00000*E*+00, *sd*=1.00000*E*+00, *mu.base*=1.00000*E*+00, *mu2*=*c*(1.40000*E*+00, 1.40000*E*+00), *mu4*=*c*(5.00000*E*-01, 5.00000*E*-01))

Inits 2

list(*B*=1.00000E-01, *d*=*c*(NA, 5.00000E-01, 5.00000E-01, 5.00000E-01, 5.00000E-01, 5.00000E-01, 5.00000E-01, sd=5.00000E-01, mu.base=5.00000E-01, mu2=c(7.00000E-01, 7.00000E-01, 7.00000E-01, 2.50000E-01, 2.50000E-01))

E.4 Pairwise results of the NMA

Table 9 Hazard ratios comparing all treatments on crisis*

	1.83 (1.45,	3.48 (1.06,	1.22 (1.06,	1.49 (1.19,	0.84 (0.64,	1.03 (0.28,	0.88 (0.33,	0.97 (0.26,	1.48 (0.55,
	2.31)	13.60)	1.40)	1.85)	1.12)	3.88)	2.15)	3.49)	3.90)
Placebo									
	High-Dose								
0.55 (0.43,	Crizanlizum	1.91 (0.57,	0.67 (0.51,	0.81 (0.63,	0.46 (0.32,	0.57 (0.15,	0.48 (0.18,	0.53 (0.14,	0.81 (0.29,
0.69)	ab	7.58)	0.88)	1.05)	0.67)	2.17)	1.21)	1.95)	2.18)
0.29 (0.07,	0.52 (0.13,	High-Dose	0.35 (0.09,	0.43 (0.11,	0.24 (0.06,	0.30 (0.04,	0.25 (0.07,	0.27 (0.04,	0.42 (0.11,
0.95)	1.76)	NAC	1.16)	1.42)	0.82)	1.77)	0.74)	1.65)	1.32)
0.82 (0.71,	1.50 (1.14,	2.85 (0.86,	L-	1.22 (0.94,	0.69 (0.50,	0.85 (0.23,	0.72 (0.27,	0.80 (0.21,	1.21 (0.44,
0.95)	1.97)	11.31)	glutamine	1.59)	0.95)	3.22)	1.79)	2.90)	3.22)
				Low-Dose					
0.67 (0.54,	1.23 (0.96,	2.34 (0.70,	0.82 (0.63,	Crizanlizum	0.57 (0.40,	0.70 (0.18,	0.59 (0.22,	0.65 (0.17,	1.00 (0.36,
0.84)	1.59)	9.28)	1.07)	ab	0.81)	2.65)	1.48)	2.39)	2.65)
1.18 (0.89,	2.17 (1.50,	4.12 (1.22,	1.45 (1.05,	1.76 (1.23,		1.23 (0.32,	1.04 (0.38,	1.15 (0.30,	1.75 (0.62,
1.57)	3.13)	16.55)	1.99)	2.53)	senicapoc	4.75)	2.63)	4.29)	4.75)
0.97 (0.26,	1.77 (0.46,	3.39 (0.57,	1.18 (0.31,	1.44 (0.38,	0.82 (0.21,	High-Dose	0.84 (0.17,	0.93 (0.25,	1.42 (0.27,
3.63)	6.74)	22.44)	4.43)	5.47)	3.15)	Senicapoc	4.19)	3.47)	7.25)

1.14 (0.46,	2.09 (0.82,	3.97 (1.36,	1.39 (0.56,	1.70 (0.68,	0.97 (0.38,	1.19 (0.24,	Low-Dose	1.11 (0.22,	1.70 (0.71,
3.00)	5.65)	15.03)	3.68)	4.58)	2.62)	6.02)	NAC	5.61)	4.16)
1.03 (0.29,	1.89 (0.51,	3.65 (0.61,	1.26 (0.34,	1.54 (0.42,	0.87 (0.23,	1.08 (0.29,	0.90 (0.18,	Low-Dose	1.53 (0.30,
3.88)	7.20)	23.66)	4.76)	5.86)	3.38)	3.97)	4.46)	Senicapoc	7.79)
0.68 (0.26,	1.23 (0.46,	2.36 (0.76,	0.82 (0.31,	1.00 (0.38,	0.57 (0.21,	0.70 (0.14,	0.59 (0.24,	0.65 (0.13,	Mid-Dose
1.83)	3.46)	8.95)	2.26)	2.80)	1.61)	3.67)	1.41)	3.35)	NAC

High-Dose Ticagrelor=twice daily 45mg, Low-Dose Ticagrelo=twice daily 10mg; Low-Dose NAC= N-acetylcysteine 600mg, Mid-Dose NAC=N-acetylcysteine 1200mg, High-Dose NAC= N-acetylcysteine 2400mg; Senicapoc=loading dose of 20mg twice daily for 4 days followed by 10mg daily maintenance, Low-Dose Senicapoc=single loading dose of 100mg followed by maintenance 6mg daily, High-Dose Senicapoc=single loading dose of 150mg followed by maintenance 10mg daily.

	1.72 (1.48, 2.00)	3.57 (1.85, 7.95)	2.97 (1.44, 6.35)	1.53 (1.12, 2.09)	1.00 (0.88, 1.14)
Placebo					
	High-Dose				
0.58 (0.50, 0.68)	Crizanlizumab	2.08 (1.06, 4.66)	1.73 (0.82, 3.76)	0.89 (0.63, 1.26)	0.58 (0.50, 0.68)
0.28 (0.13, 0.54)	0.48 (0.21, 0.95)	Low-Dose NAC	0.83 (0.28, 2.28)	0.43 (0.18, 0.89)	0.28 (0.12, 0.55)
0.34 (0.16, 0.70)	0.58 (0.27, 1.22)	1.21 (0.44, 3.52)	L-glutamine	0.51 (0.23, 1.13)	0.34 (0.16, 0.71)

Table 10 Hazard ratios comparing all treatments on all-cause hospitalization days*

0.66 (0.48, 0.90)	1.13 (0.80, 1.58)	2.35 (1.13, 5.47)	1.95 (0.89, 4.41)	Mometasome	0.66 (0.47, 0.92)
1.00 (0.88, 1.14)	1.72 (1.48, 2.00)	3.57 (1.82, 8.03)	2.97 (1.42, 6.45)	1.52 (1.09, 2.14)	Low-Dose Crizanlizumab

High-Dose Ticagrelor=twice daily 45mg, Low-Dose Ticagrelo=twice daily 10mg; Low-Dose NAC= N-acetylcysteine 600mg, Mid-Dose NAC=N-acetylcysteine 1200mg, High-Dose NAC= N-acetylcysteine 2400mg; Senicapoc=loading dose of 20mg twice daily for 4 days followed by 10mg daily maintenance, Low-Dose Senicapoc=single loading dose of 100mg followed by maintenance 6mg daily, High-Dose Senicapoc=single loading dose of 150mg followed by maintenance 10mg daily.

Table 11 Hazard ratios comparing all treatments on adverse events*									

	0.92 (0.59, 1.46)	0.57 (0.25, 1.13)	0.94 (0.74, 1.21)	1.09 (0.70, 1.70)	1.42 (0.79, 2.97)	1.05 (0.67, 1.64)
Placebo						
1.08 (0.69, 1.71)	Low-Dose NAC	0.61 (0.25, 1.42)	1.02 (0.61, 1.72)	1.19 (0.62, 2.24)	1.56 (0.74, 3.66)	1.14 (0.60, 2.17)
1.77 (0.88, 4.01)	1.64 (0.70, 4.08)	Mometasome	1.67 (0.80, 3.86)	1.95 (0.84, 4.83)	2.55 (1.02, 7.58)	1.86 (0.80, 4.59)
1.06 (0.82, 1.36)	0.98 (0.58, 1.65)	0.60 (0.26, 1.25)	Senicapoc	1.16 (0.69, 1.91)	1.51 (0.80, 3.30)	1.11 (0.67, 1.86)
				High-Dose		
0.91 (0.59, 1.43)	0.84 (0.45, 1.60)	0.51 (0.21, 1.19)	0.86 (0.52, 1.44)	Crizanlizumab	1.31 (0.62, 3.08)	0.96 (0.61, 1.48)
0.70 (0.34, 1.26)	0.64 (0.27, 1.36)	0.39 (0.13, 0.98)	0.66 (0.30, 1.25)	0.76 (0.32, 1.60)	L-glutamine	0.73 (0.31, 1.53)
						Low-Dose
0.95 (0.61, 1.50)	0.88 (0.46, 1.68)	0.54 (0.22, 1.25)	0.90 (0.54, 1.50)	1.04 (0.67, 1.63)	1.37 (0.65, 3.21)	Crizanlizumab

High-Dose Ticagrelor=twice daily 45mg, Low-Dose Ticagrelo=twice daily 10mg; Low-Dose NAC= N-acetylcysteine 600mg, Mid-Dose NAC=N-acetylcysteine 1200mg, High-Dose NAC= N-acetylcysteine 2400mg; Senicapoc=loading dose of 20mg twice daily for 4 days followed by 10mg daily maintenance, Low-Dose Senicapoc=single loading dose of 100mg followed by maintenance 6mg daily, High-Dose Senicapoc=single loading dose of 150mg followed by maintenance 10mg daily.

	able 12 hazard ratios comparing an treatments on schous adverse events														
		0.22	(0.03,	1.04	(0.27,	1.22	(0.35 <i>,</i>	0.88	(0.27,	1.08	(0.54,	1.34	(0.95 <i>,</i>	0.80	(0.42,
		0.92)		3.36)		4.39)		2.85)		2.14)		1.89)		1.53)	
Placebo															
4.50	(1.08,			4.67	(0.68,	5.70	(0.81,	4.05	(0.59,	4.92	(1.00,	6.05	(1.40,	3.66	(0.75,
37.94)		Low-Do	ose NAC	50.13)		63.02)		43.70)		42.52)		50.86)		31.45)	
0.96	(0.30,	0.21	(0.02,			1.19	(0.22,	0.85	(0.16,	1.04	(0.27,	1.30	(0.38,	0.78	(0.20,
3.64)		1.48)		Prasugr	el	7.18)		4.95)		4.55)		5.12)		3.32)	
0.82	(0.23,	0.18	(0.02,	0.84	(0.14,	High-Do	ose	0.72	(0.20,	0.87	(0.21,	1.10	(0.29,	0.65	(0.16,
2.82)		1.24)		4.63)		Ticagre	lor	2.42)		3.69)		3.97)		2.66)	
1.14	(0.35,	0.25	(0.02,	1.18	(0.20,	1.40	(0.41,	Low-Do	se	1.23	(0.32,	1.53	(0.45,	0.92	(0.24,
3.75)		1.69)		6.24)		5.00)		Ticagrel	or	4.86)		5.28)		3.52)	
0.93	(0.47,	0.20	(0.02,	0.96	(0.22,	1.14	(0.27,	0.81	(0.21,	High-Do	se	1.24	(0.58,	0.75	(0.39,
1.87)		1.00)		3.74)		4.81)		3.17)		Crizanlia	zumab	2.70)		1.43)	

Table 12 Hazard ratios comparing all treatments on serious adverse events*

0.74	(0.53,	0.17	(0.02,	0.77	(0.20,	0.91	(0.25,	0.65	(0.19,	0.80	(0.37,			0.60	(0.29,
1.05)		0.71)		2.64)		3.41)		2.22)		1.72)		L-gluta	mine	1.24)	
1.24	(0.65,	0.27	(0.03,	1.29	(0.30,	1.54	(0.38,	1.09	(0.28,	1.34	(0.70,	1.67	(0.81,	Low-Do	se
2.40)		1.33)		4.95)		6.35)		4.20)		2.58)		3.47)		Crizanli	zumab

High-Dose Ticagrelor=twice daily 45mg, Low-Dose Ticagrelo=twice daily 10mg; Low-Dose NAC= N-acetylcysteine 600mg, Mid-Dose NAC=N-acetylcysteine 1200mg, High-Dose NAC= N-acetylcysteine 2400mg; Senicapoc=loading dose of 20mg twice daily for 4 days followed by 10mg daily maintenance, Low-Dose Senicapoc=single loading dose of 100mg followed by maintenance 6mg daily, High-Dose Senicapoc=single loading dose of 150mg followed by maintenance 10mg daily.

	1.83 (1.44,	3.49 (1.09,	1.56 (1.11,	1.48 (1.19,	0.85 (0.64,	1.02 (0.28,	0.88 (0.34,	0.97 (0.26,	1.47 (0.55,
	2.32)	13.48)	2.19)	1.86)	1.12)	3.75)	2.10)	3.52)	3.90)
Placebo									
	High-Dose								
0.55 (0.43,	Crizanlizum	1.91 (0.58,	0.86 (0.57,	0.81 (0.63,	0.46 (0.32,	0.56 (0.15,	0.48 (0.18,	0.53 (0.14,	0.81 (0.29,
0.69)	ab	7.46)	1.29)	1.05)	0.67)	2.10)	1.18)	1.96)	2.20)
0.29 (0.07,	0.52 (0.13,	High-Dose	0.45 (0.11,	0.43 (0.11,	0.24 (0.06,	0.29 (0.04,	0.25 (0.07,	0.27 (0.04,	0.42 (0.11,
0.92)	1.72)	NAC	1.52)	1.40)	0.81)	1.66)	0.74)	1.60)	1.32)
0.64 (0.46,	1.17 (0.77,	2.24 (0.66,	L-	0.95 (0.63,	0.54 (0.35,	0.65 (0.17,	0.56 (0.20,	0.62 (0.16,	0.94 (0.33,
0.90)	1.77)	8.93)	glutamine	1.43)	0.84)	2.51)	1.43)	2.35)	2.66)

Table 13 Hazard ratios comparing all treatments on crisis using >18 year old subgroup results from Niihara 2018*

BMJ Oper	n
----------	---

				Low-Dose					
0.67 (0.54,	1.23 (0.96,	2.35 (0.71,	1.05 (0.70,	Crizanlizum	0.57 (0.40,	0.69 (0.18,	0.59 (0.22,	0.65 (0.17,	0.99 (0.37,
0.84)	1.59)	9.19)	1.58)	ab	0.81)	2.57)	1.45)	2.43)	2.69)
1.18 (0.89,	2.16 (1.50,	4.14 (1.23,	1.85 (1.19,	1.76 (1.23,		1.21 (0.32,	1.04 (0.38,	1.14 (0.30,	1.75 (0.62,
1.57)	3.12)	16.30)	2.88)	2.51)	Senicapoc	4.58)	2.60)	4.29)	4.79)
0.98 (0.27,	1.79 (0.48,	3.45 (0.60,	1.53 (0.40,	1.45 (0.39,	0.82 (0.22,	High-Dose	0.86 (0.18,	0.94 (0.25,	1.43 (0.28,
3.61)	6.83)	22.24)	5.91)	5.48)	3.14)	Senicapoc	4.13)	3.47)	7.35)
1.13 (0.48,	2.08 (0.85,	3.98 (1.35,	1.77 (0.70,	1.68 (0.69,	0.96 (0.38,	1.17 (0.24,	Low-Dose	1.10 (0.23,	1.68 (0.72,
2.94)	5.48)	14.62)	4.89)	4.45)	2.61)	5.71)	NAC	5.49)	4.17)
1.04 (0.28,	1.89 (0.51,	3.66 (0.63,	1.63 (0.43,	1.54 (0.41,	0.88 (0.23,	1.07 (0.29,	0.91 (0.18,	Low-Dose	1.53 (0.30,
3.84)	7.17)	23.10)	6.32)	5.82)	3.39)	3.93)	4.36)	Senicapoc	7.76)
0.68 (0.26,	1.24 (0.46,	2.36 (0.76,	1.06 (0.38,	1.01 (0.37,	0.57 (0.21,	0.70 (0.14,	0.60 (0.24,	0.65 (0.13,	Mid-Dose
1.81)	3.41)	9.08)	3.00)	2.73)	1.60)	3.53)	1.39)	3.31)	NAC

High-Dose Ticagrelor=twice daily 45mg, Low-Dose Ticagrelo=twice daily 10mg; Low-Dose NAC= N-acetylcysteine 600mg, Mid-Dose NAC=N-acetylcysteine 1200mg, High-Dose NAC= N-acetylcysteine 2400mg; Senicapoc=loading dose of 20mg twice daily for 4 days followed by 10mg daily maintenance, Low-Dose Senicapoc=single loading dose of 100mg followed by maintenance 6mg daily, High-Dose Senicapoc=single loading dose of 150mg followed by maintenance 10mg daily.

E.5 Cumulative ranking plots - Rankograms

In this appendix we provide the cumulative ranking plots, which are called 'rankograms'. These are the cumulative probability that each treatment is in the top 1, 2, 3, ... treatments on the basis of each outcome.

Figure 3 Cumulative ranking plot for Crisis

Figure 4 Cumulative ranking plot for adverse events

Figure 6 Cumulative ranking plot for all-cause hospitalization days

E.6 Sensitivity analysis using precise priors on treatment and baseline effects

A sensitivity analysis was conducted using a more precise prior on the baseline and treatment effects (i.e. $\mu_{..}$ and $d_{..}$, respectively). Instead of the base case priors of Normal(0, 0.0001) we used Normal(0, 0.1). The forest plot of results is in Figure 7 and the Bayesian probabilities of superiority (along with a comparison with base case results) are presented in Table 14. There is very limited impact on the results so our results are likely robust to prior assumptions.

Figure 7. Forest plot of all outcomes using more precise prior distributions VOC All-cause hospitalization days Mid-Dose NAC • 0.78 (0.28, 2.09) Crizanlizumab 2.5mg/kg • 1 0.58 (0.5, 0.0)

Adverse events

Crizanlizumab 2.5mg/kg	1	ľ		0.96 (0.62, 1.49)				
L-glutamine	2	•		1.2	9 (0.62	2, 2.93)		
Senicapoc		-		0.8	7 (0.52	2, 1.44)		
Mometasome	÷	h		0.5	2 (0.21	I, 1.17)		
NAC	-	-		0.	85 (0.4	15, 1.6)		
Placebo	-	L.,		0.9	2 (0.59	9, 1.44)		
	0	2	4	6	8	10		

Serious adverse events

Table 14 Bayesian probabilities that crizanlizumab is superior on each outcome analyzed using both the precise prior sensitivity analysis and the vague priors of the base case*

				Serious				Serious
		All-cause	Adverse	adverse		All-cause	Adverse	adverse
	voc	hospitalization	events	events	voc	hospitalization	events	events
		-				-		
Placebo	>0.9999	>0.9999	0.6384	0.5895	>0.9999	>0.9999	0.6558	0.5857
L-glutamine	0.9982	0.0747	0.2563	0.2847	0.9982	0.0731	0.2480	0.2854
Crizanlizumab								
2.5mg/kg	0.9425	>0.9999	0.5772	0.8136	0.9452	>0.9999	0.5743	0.8134
Mometasome	-	0.7548	0.9408	-	-	0.7496	0.9399	-
Low-Dose								
NAC	0.9486	0.0193	0.6978	0.9601	0.9396	0.0166	0.6996	0.9744
Mid-Dose								
NAC	0.6919	-	-	-	0.6619	-	-	-
High-Dose								
NAC	0.1720	-	-	-	0.1507	-	-	-
Prasugrel	-	-	-	0.5398	-	-	-	0.5242
Senicapoc	>0.9999	-	0.7038	-	>0.9999	-	0.7176	-

BMJ	Open
-----	------

High-Dose	0 8077				0.0010			
Senicapoc	0.8077	-	-	-	0.8010	-	-	-
Low-Dose								
Senicapoc	0.8328	-	-	-	0.8334	-	-	-
High-dose								
Ticagrelor	-	-	-	0.4380	-	-	-	0.4247
Low-dose								
Ticagrelor	-	-	-	0.6267	-	-	-	0.6181

References

- 1. Cooper NJ, Sutton AJ, Morris D, Ades AE, Welton NJ. Addressing between-study heterogeneity and inconsistency in mixed treatment comparisons: Application to stroke prevention treatments in individuals with non-rheumatic atrial fibrillation. *Stat Med.* 2009;28(14):1861-1881.
- 2. Dias S, Sutton AJ, Ades AE, Welton NJ. Evidence synthesis for decision making 2: a generalized linear modeling framework for pairwise and network meta-analysis of randomized controlled trials. *Med Decis Making*. 2013;33(5):607-617.
- Daak AH, M.; Dampier, C.; Fuh, B.; Kanter, J.; Alvarez, O.; Black, V.; McNaull, M.; Callaghan, M.; George, A.; Neumayr, L.; Hilliard, L.; Sancilio, F.; Rabinowicz, A. Clinical effect of SC411 (Altemia TM) on children with sickle cell disease in the scot trial: A phase 2 randomized, doubleblind, placebo-controlled, parallel-group, dose-finding multi-center study. *Pediatric Blood and Cancer.* 2018;65 (Supplement 1):S8.
- Heeney MH, C.; Abboud, M.; Inusa, B.; Kanter, J.; Ogutu, B.; Brown, P.; Heath, L.; Jakubowski, J.; Zhou, C.; Zamoryakhin, D.; Agbenyega, T.; Colombatti, R.; Hassab, H.; Nduba, V.; Oyieko, J.; Robitaille, N.; Segbefia, C.; Rees, D. Determining effects of platelet inhibition on vasoocclusive events (DOVE) trial: A double-blind, placebo-controlled, study of prasugrel in paediatric patients with sickle cell anaemia. *Haematologica*. 2016;101 (Supplement 1):136-137.
- Reid MEEB, Amal; Inati, Adlette; Kutlar, Abdullah; Abboud, Miguel R.; Haynes, Johnson, Jr.; Ward, Richard; Sharon, Bruce; Taher, Ali T.; Smith, Wally; Manwani, Deepa; Ghalie, Richard G. A double-blind, placebo-controlled phase II study of the efficacy and safety of 2,2dimethylbutyrate (HQK-1001), an oral fetal globin inducer, in sickle cell disease. *American Journal of Hematology*. 2014;89(7):709-713.
- 6. Vichinsky EP, Neumayr LD, Gold J, Weiner MW. A Randomized Trial of the Safety and Benefit of Transfusion Vs. Standard Care In the Prevention of Sickle Cell-Related Complications In Adults: a Preliminary Report From the Phase II NHLBI Comprehensive Sickle Cell Centers (CSCC) Study of Neuropsychological Dysfunction and Neuroimaging Abnormalities In Neurologically Intact Adult Patients with Sickle Cell Disease. *Blood (abstract only)*. 2010;116:3221.
- 7. Dias S, Welton N, Sutton A, Ades A. NICE DSU Technical Support Document 2: A Generalised Linear Modelling Framework for Pairwise and Network Meta-Analysis of Randomised Controlled Trials. *Report by the Decision Support Unit.* 2011 (last updated September 2016).
- 8. Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter DJ. *The BUGS book : a practical introduction to Bayesian analysis.* Boca Raton ; London: CRC Press; 2013.